
3.4. FOR-LOOPS 65

3.4 For-loops

In the previous section we looked at while-loops, Python’s basic looping struc-
ture. There is a second loop construct in Python called a for-loop. This is more
specialized. We use for-loops when there is a particular set of values that we
want to work through, doing some task once with each of these values.

A for-loop has the structure:

for <v a r i a b l e> in < sequence >:
s t a t emen t b l o c k :

When this statement is executed, the variable takes on the first value in the
sequence and the statement block is executed. The variable then takes on the
next value and the statement block is executed. This process continues with
each of the values in the sequence.

What is a sequence? It is any collection of ”sequential” data values: for
something to be a sequence we must be able to say what the first value is, and
for each value but the last we need to be able to say what the next value is. The
non-negative integers form a sequence: 0 is the first value, 1 comes next, 2 is after
that, and so forth. The non-negative real numbers do not. For example, there is
no ”next” value after 1.3. There is 1.31, but 1.301 comes before that, and 1.3001
precedes that , and so forth. Python has many ways to construct a sequence;
among the most imporant of these is the list. A list is a sequence specified by
listing values inside square brackets, as in [”John”, ”George”, ”Paul”, ”Ringo”].
Python makes it easy to work with lists. For example, Program 3.4.1 will print

The Beatles were:
John
George
Paul
Ringo

This p r i n t s a l i s t o f the Be a t l e s
def main () :

print (”The Bea t l e s were : ”)
for name in [”John” , ”George ” , ”Paul ” , ”Ringo ”] :

print (” %s ” % name)

main ()

Program 3.4.1: The Beatles

Any values can be put into lists: strings, numbers, even other lists. For
example, [1, 2, [3, 4]] is a list where the first two elements are numbers and

66

the third is a list with two elements.
It is often useful to have a loop walk through a range of numbers. Python’s

range() function generates sequences of numbers for this purpose. There are
three ways to use this function:

• range(a, b) generates a list-like structure containing the numbers from a
to b: including a but not including b. For example, range(3, 7) is the
sequence 3, 4, 5, 6s. This assumes a is smaller than b; if the reverse is
true the list generated is empty.

• range(b) is the same as range(0, b). For example, range(5) is [0, 1, 2, 3, 4].

• range(a, b, c) uses an increment of c to go from one number to the next.
So range(2, 12, 3) is [2, 5, 8, 11] and range(5, 0, −1) is [5, 4, 3, 2, 1].

In Python 2 range(a, b) is an actual list. This is simple but runs into trouble
if you work with very large ranges. For example, if you try to roll a pair of dice
a billion times with the code

for x in range (1000000000) :
v a l u e = Ro l lD i c e ()
. . . .

Python 2 would actually generate in memory a list with a billion items. This
would probably cause your program to crash. In Python 3 the range-function
returns a range−object that can be iterated through with a for-loop and works
like a list, but it has the same small size regardless of the size of the range. The
only time you are likely to see a difference between lists and range-objects is if
you try to print a range-object.

print (range (0 , 10))

prints the words range(0, 10) rather than the numbers from 0 through 9. If
you want to print the elements of the range you can convert it into an actual
list with the list () function:

print (l i s t (range (0 , 10)))

prints [0,1,2,3,4,5,6,7,8,9]
The following code fragment uses the range() function to print the factors

of the number 36. Note that we need to extend the range up to 37 so that the
last number in the list is 36.

for x in range (1 , 3 7) :
i f 36%x == 0 :

print (x)

Factoring 36

3.4. FOR-LOOPS 67

We can also treat strings as sequences — the letters are taken in the order in
which they appear in the string. The next program reads a string from the user
and reports how many instances of the letter ”a” it contains. As is common
with programs that count things, this has a variable count that starts at 0 and
is incremented each time the appropriate letter is found.

This count s the a ’ s i n a s t r i n g
def main () :

s t r i n g = input (” Ente r a s t r i n g : ”)
count = 0
for l e t t e r in s t r i n g :

i f l e t t e r == ”a” :
count = count + 1

print (”The l e t t e r ’ a ’ o c cu r s %d t imes . ”%count)
main ()

Program 3.4.2: Counting instances of a letter

We will illustrate for-loops with several programs that find prime numbers.
Remember that a number is prime if its only factors are 1 and itself. 2, 3, 5, 7,
11, and 13 are all prime numbers, 15 is not. First, we will write a program that
lets the user input a number; the program will say if this number is prime. The
basic structure inputs a single number and says if it is prime:

def main () :
number = eval (input (” Ente r a number : ”))

t e s t i f i t i s pr ime ; f o r now we
a lways say no .
i sP r ime = Fa l s e

i f i sP r ime :
print (”%d i s pr ime . ” % number)

else :
print (”%d i s not pr ime . ” % number)

main ()

Program 3.4.3: Initial version

Next, we need to fill in code for testing whether the number we have is
prime. One way to do this is to think about the definition. A number is prime

68

if it is divisible only by 1 and itself, so it is not prime if we can find any divisor
greater than 1 and less than the number itself. This is a natural application for
a for-loop we know exactly the range of values we want to check, so we use the
range() function to generate them and a for-loop to check them. We will start
the isPrime variable out at True and change it to False if we ever find a divisor.

i sP r ime = True
for f a c t o r in range (2 , number) :

i f number % f a c t o r == 0 :
i sP r ime = Fa l s e

Putting this altogether, we have the first complete version of our prime
finder:

This l e t s the u s e r e n t e r a number and r e p o r t s
whether t ha t number i s pr ime .
def main () :

number = eval (input (” Ente r a number : ”))

i sP r ime = True
for f a c t o r in range (2 , number) :

i f number % f a c t o r == 0 :
i sP r ime = Fa l s e

i f i sP r ime :
print (”%d i s pr ime . ” % number)

else :
print (”%d i s not pr ime . ” % number)

main ()

Program 3.4.3: Final version

We can turn this into a program that generates prime numbers if we surround
it with a loop in place of the single input statement. For example, if we want
to find all prime numbers between 2 and 100 we would use the loop:

for number in range (2 , 101) :
i sP r ime = True
for f a c t o r in range (2 , number) :

i f number % f a c t o r == 0 :
i sP r ime = Fa l s e

3.4. FOR-LOOPS 69

Note that for each new value of number we need to reset isPrime to True; oth-
erwise, once we found a non-prime number there would never be a way to find
a prime one: isPrime would always be False.

One more change to Program 3.4.3 will help make it a better prime number
generator. The prime numbers are fairly sparse; most integers are not prime.
If we print ”is prime” or ”is not prime” with every number, there are so many
non-primes that it becomes hard to see the actual primes. We accordingly
change the if -statement to report only the prime numbers and be silent on the
non-primes. Here is the resulting program:

This p r i n t s a l l o f the pr ime numbers up to
a l i m i t s u p p l i e d by the u s e r
def main () :

max = eval (input (” Ente r the l a r g e s t number to check : ”))
for number in range (2 , max+1):

i sP r ime = True
for f a c t o r in range (2 , number) :

i f number % f a c t o r == 0 :
i sP r ime = Fa l s e

i f i sP r ime :
print (”%d i s pr ime . ” % number)

main ()

Program 3.4.4: Final version

As a final example for this section, here is a third prime number program.
This time we make two changes that illustrate some of the differences between
for-loops and while-loops. The first change is that instead of asking the user
how high in the list of integers we should check for prime numbers, this time we
ask the user how many prime numbers we should find. This might sound like a
minor change, but it forces us to rethink our loops. In Program 3.4.4 our basic
structure is this:

for number in range (2 , max+1):
< i f number i s prime , print i t>

If N is the number of primes we need to find, we could change our main loop to:

70

for i in [I , 2 , 3 , . N] :
<Find the i t h pr ime and print i t>

This isn’t so simple. How do we find the ith prime number? This seems
unnecessarily complicated. An easier solution is to have a loop that generates
numbers to test, with the exit condition based on whether we have found enough
primes. This needs to be a while-loop rather than a for-loop because we don’t
know how many times we will execute its body; we just keep going around until
we have enough primes. This looks something like the following:

number = 2
pr imeCount = 0
while pr imeCount < N:

< i f number i s pr ime :>
print number
pr imeCount = primeCount + 1

number = number + 1

It should be an easy matter to convert the body of this while-loop to Python
code. First, we are going to make another change in the program. What we
have so far will make a long list of prime numbers. The output will be shorter
if we allow for multiple columns, such as

2 3 5 7 11 13

17 19 23 29 31 37

41 43 47 53 59

The first thought of many beginners at this point would be ”We need an-
other loop.” But what would this loop do? We already have a loop to generate
numbers. We don’t need a loop to count the entries in a line; a simple variable
can do that. We will print the numbers just as before, only with a formatting
statement to control the number of spaces used for each number regardless of
how many digits it has (so we get nice columns of output), and we will end each
print statement with a comma, so that successive prints appear on the same
line. Each time we print a number we will increment a lineCount variable that
tells us how many numbers are on the current line. When this is large enough
we execute a print statement (with no comma) to terminate the line and start
over. Of course, we will also start our lineCount variable over at 0.

Now our code looks like this:

3.4. FOR-LOOPS 71

number = 2
pr imeCount = 0
l i n e c o u n t = 0
while pr imeCount < N:

< i f number i s pr ime :>
print (”%7d ” % number , end = ””)
pr imeCount = primeCount + 1
l i n eCoun t = l i n eCoun t + 1
i f l i n eCoun t == C :

print ()
l i n eCoun t = 0

number = number + 1

Here is the whole program:

72

This p r i n t s the f i r s t N pr ime numbers ,
where the v a l u e o f N i s s u p p l i e d by the u s e r .
The output i s p r i n t e d i n C columns .

def main () :
N = eval (input (”How many pr ime numbers do you want? ”))
C = eval (input (”How many columns o f output do you want? ”))
number = 2
pr imeCount = 0
l i n eCoun t = 0
while pr imeCount < N:

i sP r ime = True
for f a c t o r in range (2 , number) :

i f number % f a c t o r == 0 :
i sP r ime = Fa l s e

i f i sP r ime :
print (”%7d ” % number , end=””)
pr imeCount = primeCount + 1
l i n eCoun t = l i n eCoun t + 1
i f l i n eCoun t == C :

print ()
l i n eCoun t = 0

number = number + 1
main ()

Program 3.4.5: Final version

